GA3 and other signal regulators (MeJA and IAA) improve xanthumin biosynthesis in different manners in Xanthium strumarium L.
نویسندگان
چکیده
Xanthanolides from Xanthium strumarium L. exhibit various pharmacological activities and these compounds are mainly produced in the glandular trichomes of aerial plant parts. The regulation of xanthanolide biosynthesis has never been reported in the literature. In this study, the effects of phytohormonal stimulation on xanthumin (a xanthanolide compound) biosynthesis, glandular trichomes and germacrene A synthase (GAS) gene expression in X. strumarium L. young leaves were investigated. The exogenous applications of methyl jasmonate (MeJA), indole-3-acetic acid (IAA), and gibberrellin A3 (GA3) at appropriate concentrations were all found to improve xanthumin biosynthesis, but in different ways. It was suggested that a higher gland density stimulated by MeJA (400 µM) or IAA (200 µM) treatment caused at least in part an improvement in xanthumin production, whereas GA3 (10 µM) led to an improvement by up-regulating xanthumin biosynthetic genes within gland cells, not by forming more glandular trichomes. Compared to the plants before the flowering stage, plants that had initiated flowering showed enhanced xanthumin biosynthesis, but no higher gland density, an effect was similar to that caused by exogenous GA3 treatment.
منابع مشابه
Identifying Three Ecological Chemotypes of Xanthium strumarium Glandular Trichomes Using a Combined NMR and LC-MS Method
Xanthanolides, as the sesquiterpene lactones, are reportedly the major components for the pharmacological properties of X. strumarium L. species. Phytochemical studies indicated that the glandular structures on the surface of plant tissues would form the primary sites for the accumulation of this class of the compounds. As the interface between plants and their natural enemies, glandular tricho...
متن کاملDifferential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis
The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant s...
متن کاملComparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.
Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identif...
متن کاملEvaluation of the Anticancer Effect of Xanthium Strumarium Root Extract on Human Epithelial Ovarian Cancer Cells Using 1H NMR-Based Metabolomics
Epithelial Ovarian cancer is the leading cause of cancer mortality among women all over the world. As chemotherapeutics has many side effects, researchers have focused on the potential use of medicinal plants as natural antitumor agents. Xanthium strumarium studied in this work as an herbal anticancer agent. This study aimed to evaluate the antitumor effect and metabolic alterations ca...
متن کاملPotential Effects of Growth Regulator Agents on Antioxidant Activity of Two Verities of Faba Bean (vicia Fabal.,)
Faba bean (Vicia faba L.) as the most cultivated leguminous species in the world, is an excellent source of protein, dietary fiber, micronutrients and phytochemicals. A field experiment was conducted at Ghazala, Zagazig University, Sharkia Governorate during 2015, to study the effect of plant Growth Regulator such as; Gibberellic acid (GA3) and Inidol acetic acid (IAA) on antioxidant contents o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2014